随着对性能优于硅基器件的碳化硅(SiC)功率器件的需求不断增长,碳化硅制造工艺的高成本和低良率是尚待解决的最紧迫问题。研究表明,SiC器件的性能很大程度上受到晶体生长过程中形成的所谓杀手缺陷(影响良率的缺陷)的影响。在改进降低缺陷密度的生长技术的同时,能够识别和定位缺陷的生长后检测技术已成为制造过程的关键必要条件。在这篇综述文章中,我们对碳化硅缺陷检测技术以及缺陷对碳化硅器件的影响进行了展望。本文还讨论了改进现有检测技术和降低缺陷密度的方法的潜在解决方案,这些解决方案有利于高质量SiC器件的大规模生产。
前言由于电力电子市场的快速增长,碳化硅(SiC,一种宽禁带半导体)成为开发用于电动汽车、航空航天和功率转换器的下一代功率器件的有前途的候选者。与由硅或砷化镓(GaAs)制成的传统器件相比,基于碳化硅的电力电子器件具有多项优势。表1显示了SiC、Si、GaAs以及其他宽禁带材料(如GaN和金刚石)的物理性能的比较。由于具有宽禁带(4H-SiC为~3.26eV),基于SiC器件可以在更高的电场和更高的温度下工作,并且比基于Si的电力电子器件具有更好的可靠性。SiC还具有优异的导热性(约为Si的三倍),这使得SiC器件具有更高的功率密度封装,具有更好的散热性。与硅基功率器件相比,其优异的饱和电子速度(约为硅的两倍)允许更高的工作频率和更低的开关损耗。SiC优异的物理特性使其非常有前途地用于开发各种电子设备,例如具有高阻断电压和低导通电阻的功率MOSFET,以及可以承受大击穿场和小反向漏电流的肖特基势垒二极管(SBD)。
提高碳化硅晶圆质量对制造商来说很重要,因为它直接决定了碳化硅器件的性能,从而决定了生产成本。然而,低缺陷密度的SiC晶圆的生长仍然非常具有挑战性。最近,碳化硅晶圆制造的发展已经完成了从100mm(4英寸)到150mm(6英寸)晶圆的艰难过渡。SiC需要在高温环境中生长,同时具有高刚性和化学稳定性,这导致生长的SiC晶片中存在高密度的晶体和表面缺陷,导致衬底和随后制造的外延层质量差。图1总结了SiC中的各种缺陷以及这些缺陷的工艺步骤,下一节将进一步讨论。
各种类型的缺陷会导致设备性能不同程度的劣化,甚至可能导致设备完全失效。为了提高良率和性能,在设备制造之前检测缺陷的技术变得非常重要。因此,快速、高精度、无损的检测技术在碳化硅生产线中发挥着重要作用。在本文中,我们将说明每种类型的缺陷及其对设备性能的影响。我们还对不同检测技术的优缺点进行了深入的讨论。这篇综述文章中的分析不仅概述了可用于SiC的各种缺陷检测技术,还帮助研究人员在工业应用中在这些技术中做出明智的选择(图2)。表2列出了图2中检测技术和缺陷的首字母缩写。
碳化硅晶圆中的缺陷通常分为两大类:(1)晶圆内的晶体缺陷和(2)晶圆表面处或附近的表面缺陷。正如我们在本节中进一步讨论的那样,晶体学缺陷包括基面位错(BPDs)、堆垛层错(SFs)、螺纹刃位错(TEDs)、螺纹位错(TSDs)、微管和晶界等,横截面示意图如图3(a)所示。SiC的外延层生长参数对晶圆的质量至关重要。生长过程中的晶体缺陷和污染可能会延伸到外延层和晶圆表面,形成各种表面缺陷,包括胡萝卜缺陷、多型夹杂物、划痕等,甚至转化为产生其他缺陷,从而对器件性能产生不利影响。
生长在4°偏角4H-SiC衬底上的SiC外延层是当今用于各种器件应用的最常见的晶片类型。在4°偏角4H-SiC衬底上生长的SiC外延层是当今各种器件应用中最常用的晶圆类型。众所周知,大多数缺陷的取向与生长方向平行,因此,SiC在SiC衬底上以4°偏角外延生长不仅保留了下面的4H-SiC晶体,而且使缺陷具有可预测的取向。此外,可以从单个晶圆上切成薄片的晶圆总数增加。然而,较低的偏角可能会产生其他类型的缺陷,如3C夹杂物和向内生长的SFs。在接下来的小节中,我们将讨论每种缺陷类型的详细信息。
和1/3。TSDs和TEDs都可以从衬底延伸到晶圆表面,并带来小的凹坑状表面特征,如图3b所示。通常,TEDs的密度约为8000-10,0001/cm2,几乎是TSDs的10倍。扩展的TSDs,即TSDs从衬底延伸到外延层,可能在SiC外延生长过程中转化为基底平面上的其他缺陷,并沿生长轴传播。Harada等人表明,在SiC外延生长过程中,TSDs被转化为基底平面上的堆垛层错(SFs)或胡萝卜缺陷,而外延层中的TEDs则被证明是在外延生长过程中从基底继承的BPDs转化而来的。
。BPDs很少出现在SiC晶圆表面。它们通常集中在衬底上,密度为15001/cm2,而它们在外延层中的密度仅为约101/cm2。Kamei等人报道,BPDs的密度随着SiC衬底厚度的增加而降低。BPDs在使用光致发光(PL)检测时显示出线c所示。在SiC外延生长过程中,扩展的BPDs可能转化为SFs或TEDs。
分量。微管的直径范围从几分之一微米到几十微米。微管在SiC晶片表面显示出大的坑状表面特征。从微管发出的螺旋,表现为螺旋位错。通常,微管的密度约为0.1–11/cm2,并且在商业晶片中持续下降。
堆垛层错(SFs)是SiC基底平面中堆垛顺序混乱的缺陷。SFs可能通过继承衬底中的SFs而出现在外延层内部,或者与扩展BPDs和扩展TSDs的变换有关。通常,SFs的密度低于每平方厘米1个,并且通过使用PL检测显示出三角形特征,如图3e所示。然而,在SiC中可以形成各种类型的SFs,例如Shockley型SFs和Frank型SFs等,因为晶面之间只要有少量的堆叠能量无序可能导致堆叠顺序的相当大的不规则性。
除了上述各小节所述的缺陷外,还存在一些其他类型的缺陷。晶界是两种不同的SiC晶体类型在相交时晶格失配引起的明显边界。天行体育平台六边形空洞是一种晶体缺陷,在SiC晶片内有一个六边形空腔,它已被证明是导致高压SiC器件失效的微管缺陷的来源之一。颗粒夹杂物是由生长过程中下落的颗粒引起的,通过适当的清洁、仔细的泵送操作和气流程序的控制,它们的密度可以大大降低。
通常,表面缺陷是由扩展的晶体缺陷和污染形成的。胡萝卜缺陷是一种堆垛层错复合体,其长度表示两端的TSD和SFs在基底平面上的位置。基底断层以Frank部分位错终止,胡萝卜缺陷的大小与棱柱形层错有关。这些特征的组合形成了胡萝卜缺陷的表面形貌,其外观类似于胡萝卜的形状,密度小于每平方厘米1个,如图3f所示。胡萝卜缺陷很容易在抛光划痕、TSD或基材缺陷处形成。
多型夹杂物,通常称为三角形缺陷,是一种3C-SiC多型夹杂物,沿基底平面方向延伸至SiC外延层表面,如图3g所示。它可能是由外延生长过程中SiC外延层表面上的下坠颗粒产生的。颗粒嵌入外延层并干扰生长过程,产生了3C-SiC多型夹杂物,该夹杂物显示出锐角三角形表面特征,颗粒位于三角形区域的顶点。许多研究还将多型夹杂物的起源归因于表面划痕、微管和生长过程的不当参数。
量化SiC衬底质量是外延层沉积和器件制造之前必不可少的一步。外延层形成后,应再次进行晶圆检查,以确保缺陷的位置已知,并且其数量在控制之下。检测技术可分为表面检测和亚表面检测,这取决于它们能够有效地提取样品表面上方或下方的结构信息。正如我们在本节中进一步讨论的那样,为了准确识别表面缺陷的类型,通常使用KOH(氢氧化钾)通过在光学显微镜下将其蚀刻成可见尺寸来可视化表面缺陷。然而,这是一种破坏性的方法,不能用于在线大规模生产。对于在线检测,需要高分辨率的无损表面检测技术。常见的表面检测技术包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、光学显微镜(OM)和共聚焦微分干涉对比显微镜(CDIC)等。对于亚表面检测,常用的技术包括光致发光(PL)、X射线形貌术(XRT)、镜面投影电子显微镜(MPJ)、光学相干断层扫描(OCT)和拉曼光谱等。在这篇综述中,我们将碳化硅检测技术分为光学方法和非光学方法,并在以下各节中对每种技术进行讨论。
非光学检测技术,即不涉及任何光学探测的技术,如KOH蚀刻和TEM,已被广泛用于表征SiC晶圆的质量。这些方法在检测SiC晶圆上的缺陷方面相对成熟和精确。然而,这些方法会对样品造成不可逆转的损坏,因此不适合在生产线中使用。虽然存在其他非破坏性的检测方法,如SEM、CL、AFM和MPJ,但这些方法的通量较低,只能用作评估工具。接下来,我们简要介绍上述非光学技术的原理。还讨论了每种技术的优缺点。
透射电子显微镜(TEM)可用于以纳米级分辨率观察样品的亚表面结构。透射电镜利用入射到碳化硅样品上的加速电子束。具有超短波长和高能量的电子穿过样品表面,从亚表面结构弹性散射。SiC中的晶体缺陷,如BPDs、TSDs和SFs,可以通过TEM观察。
扫描透射电子显微镜(STEM)是一种透射电子显微镜,可以通过高角度环形暗场成像(HAADF)获得原子级分辨率。通过TEM和HAADF-STEM获得的图像如图4a所示。TEM图像清晰地显示了梯形SF和部分位错,而HAADF-STEM图像则显示了在3C-SiC中观察到的三种SFs。这些SFs由1、2或3个断层原子层组成,用黄色箭头表示。虽然透射电镜是一种有用的缺陷检测工具,但它一次只能提供一个横截面视图,因此如果需要检测整个碳化硅晶圆,则需要花费大量时间。此外,透射电镜的机理要求样品必须非常薄,厚度小于1μm,这使得样品的制备相当复杂和耗时。总体而言,透射电镜用于了解缺陷的基本晶体学,但它不是大规模或在线检测的实用工具。
图4不同的缺陷检测方法和获得的缺陷图像。(a)SFs的TEM和HAADF图像;(b)KOH蚀刻后的光学显微照片图像;(c)带和不带SF的PL光谱,而插图显示了波长为480nm的单色micro-PL映射;(d)室温下SF的真彩CLSEM图像;(e)各种缺陷的拉曼光谱;(f)微管相关缺陷204cm
KOH蚀刻是另一种非光学技术,用于检测多种缺陷,例如微管、TSDs、TEDs、BDPs和晶界。KOH蚀刻后形成的图案取决于蚀刻持续时间和蚀刻剂温度等实验条件。当将约500°C的熔融KOH添加到SiC样品中时,在约5min内,SiC样品在有缺陷区域和无缺陷区域之间表现出选择性蚀刻。冷却并去除SiC样品中的KOH后,存在许多具有不同形貌的蚀刻坑,这些蚀刻坑与不同类型的缺陷有关。如图4b所示,位错产生的大型六边形蚀刻凹坑对应于微管,中型凹坑对应于TSDs,小型凹坑对应于TEDs。
镜面投影电子显微镜(MPJ)是另一种很有前途的表面下检测技术,它允许开发能够检测纳米级缺陷的高通量检测系统。由于MPJ反映了SiC晶圆上表面的等电位图像,因此带电缺陷引起的电位畸变分布在比实际缺陷尺寸更宽的区域上。因此,即使工具的空间分辨率为微米级,也可以检测纳米级缺陷。来自电子枪的电子束穿过聚焦系统,均匀而正常地照射到SiC晶圆上。值得注意的是,碳化硅晶圆受到紫外光的照射,因此激发的电子被碳化硅晶圆中存在的缺陷捕获。此外,SiC晶圆带负电,几乎等于电子束的加速电压,使入射电子束在到达晶圆表面之前减速并反射。这种现象类似于镜子对光的反射,因此反射的电子束被称为“镜面电子”。当入射电子束照射到携带缺陷的SiC晶片时,缺陷的带负电状态会改变等电位表面,导致反射电子束的不均匀性。MPJ是一种无损检测技术,能够对SiC晶圆上的静电势形貌进行高灵敏度成像。Isshiki等人使用MPJ在KOH蚀刻后清楚地识别BPDs、TSDs和TEDs。Hasegawa等人展示了使用MPJ检查的BPDs、划痕、SFs、TSDs和TEDs的图像,并讨论了潜在划痕与台阶聚束之间的关系。
原子力显微镜(AFM)通常用于测量SiC晶圆的表面粗糙度,并在原子尺度上显示出分辨率。AFM与其他表面检测方法的主要区别在于,它不会受到光束衍射极限或透镜像差的影响。AFM利用悬臂上的探针尖端与SiC晶圆表面之间的相互作用力来测量悬臂的挠度,然后将其转化为与表面缺陷特征外观成正比的电信号。AFM可以形成表面缺陷的三维图像,但仅限于解析表面的拓扑结构,而且耗时长,因此通量低。
扫描电子显微镜(SEM)是另一种广泛用于碳化硅晶圆缺陷分析的非光学技术。SEM具有纳米量级的高空间分辨率。加速器产生的聚焦电子束扫描SiC晶圆表面,与SiC原子相互作用,产生二次电子、背散射电子和X射线等各种类型的信号。输出信号对应的SEM图像显示了表面缺陷的特征外观,有助于理解SiC晶体的结构信息。但是,SEM仅限于表面检测,不提供有关亚表面缺陷的任何信息。
阴极发光(CL)光谱利用聚焦电子束来探测固体中的电子跃迁,从而发射特征光。CL设备通常带有SEM,因为电子束源是这两种技术的共同特征。加速电子束撞击碳化硅晶圆并产生激发电子。激发电子的辐射复合发射波长在可见光谱中的光子。通过结合结构信息和功能分析,CL给出了样品的完整描述,并直接将样品的形状、大小、结晶度或成分与其光学特性相关联。Maximenko等人显示了SFs在室温下的全彩CL图像,如图4d所示。不同波长对应的SFs种类明显,CL发现了一种常见的单层Shockley型堆垛层错,其蓝色发射在~422nm,TSD在~540nm处。虽然SEM和CL由于电子束源而具有高分辨率,但高能电子束可能会对样品表面造成损伤。
为了在不损失检测精度的情况下实现高吞吐量的在线批量生产,基于光学的检测方法很有前途,因为它们可以保存样品,并且大多数可以提供快速扫描能力。表面检测方法可以列为OM、OCT和DIC,而拉曼、XRT和PL是表面下检测方法。在本节中,我们将介绍每种检测方法的原理,这些方法如何应用于检测缺陷,以及每种方法的优缺点。
光学显微镜(OM)最初是为使用光学和光学放大元件近距离观察样品而开发的,可用于检查表面缺陷。该技术能够在暗场模式、明场模式和相位模式下生成图像,每种模式都提供特定的缺陷信息,并且这些图像的组合提供了识别大多数表面缺陷的能力。当检测灯照射在SiC晶圆表面时,暗场模式通过表面缺陷捕获散射光,因此图像具有深色背景,排除了未散射的光以及指示缺陷位置的明亮物体。另一方面,明场模式捕获未散射的光,由于缺陷的散射,显示带有深色物体的白色背景图像。相位模式捕获相移图像,这些图像由SiC晶圆表面的污染积累,显示相差图像。OM的散射图像在横向分辨率上具有优势,而相差图像主要针对检查晶圆表面的光滑度。一些研究已经有效地利用光学显微镜来表征表面缺陷。PeiMa等人发现,非常薄的胡萝卜缺陷或微管缺陷太小,无法通过光学相干断层扫描(OCT)进行检查,但由于其在横向分辨率方面的优势,可以通过光学显微镜进行检查。Zhao等利用OM研究了多型夹杂物、表面凹坑和台阶聚束的成因。
光学相干断层扫描(OCT)是一种光学检测技术,可以提供所研究样品的快速、无损和3D地下图像。由于OCT最初用于诊断许多疾病,因此其大部分应用都是解析生物和临床生物医学样本的图像。然而,由于可见光和红外波长的先进光学元件的发展,OCT的分辨率已提高到亚微米级,因此人们对应用OCT检测SiC晶圆缺陷的兴趣日益浓厚。OCT中使用的光源具有宽带光谱,由可见光和红外区域的宽范围频率组成,因此相干长度很小,这意味着轴向分辨率可以非常高,而横向分辨率取决于光学器件的功能。OCT的原理基于低相干干涉测量,这通常是迈克尔逊型设置。OCT的光源分为两个臂,一个参考臂和一个检查臂。照射到参考臂的光束被反射镜反射,而照射到检测臂的光束被碳化硅晶圆反射。通过在参考臂中移动反射镜,两束光束的组合会产生干涉,但前提是两束光束之间的光程差小于相干长度。因此,探测器获取的干涉信号包含SiC晶圆的横截面信息,通过横向组合这些横截面检测,可以实现OCT的3D图像。然而,OCT的检测速度和横向分辨率仍无法与其他二维检测技术相媲美,工作光谱范围内表面散射和吸收损耗的干扰是OCT成像的主要局限性。PeiMa等人使用OCT分析胡萝卜缺陷、多型夹杂物、晶界和六边形空隙。Duncan等人应用OCT研究了单晶SiC的内部结构。
微分干涉对比(DIC)是一种将相差引入表面缺陷图像的显微镜技术。与OM相比,使用DIC的优点是DIC的分辨率远高于OM的相位模式,因为DIC中的图像形成不受孔径的限制,并且DIC可以通过采用共聚焦扫描系统产生三维缺陷图像。DIC的光源通过偏振片进行线偏振,然后通过沃拉斯顿棱镜分成两个正交偏振子光束,即参考光束和检查光束。参考光束撞击碳化硅晶圆的正常表面,而检测光束撞击有缺陷的碳化硅晶圆表面,产生与缺陷几何形状和光程长度改变相对应的相位延迟。由于两个子光束是正交偏振的,因此在检测过程中它们不会相互干扰,直到它们再次通过沃拉斯顿棱镜并进入分析仪以生成特定于缺陷的干涉图案。然后,处理器接收缺陷信号,形成二维微分干涉对比图像。为了生成三维图像,可以使用共聚焦扫描系统来关闭偏离系统焦点的两个子光束,以避免错误检测。因此,通过使共聚焦系统的焦点沿光轴方向移动,可以获得SiC晶圆表面的三维缺陷图像。Sako等人表明,使用CDIC在SiC外延层上观察到具有刮刀形表面轮廓的表面缺陷。Kitabatake等人建立了使用CDIC的综合评估平台,以检查SiC晶圆和外延薄膜上的表面缺陷。
X射线衍射形貌(XRT)是一种强大的亚表面检测技术,可以帮助研究SiC晶片的晶体结构,因为X射线的波长与SiC晶体原子间平面之间的距离相当。它用于通过测量由于缺陷引起的应变场引起的衍射强度变化来评估SiC晶圆的结构特性。这意味着晶体缺陷会导致晶格间距的变化或晶格周围的旋转,从而形成应变场。XRT常用于高通量、足分辨率的生产线;然而,它需要一个大规模的X射线发射装置,其缺陷映射能力仍然需要改进。XRT的图像形成机理基于劳厄条件(动量守恒),当加热灯丝产生的电子束被准直并通过高电势加速以获得足够的能量时,会产生一束准直的X射线,然后将其引导到金属阳极。当X射线照射到SiC晶片上时,由于X射线从SiC的原子间平面以特定角度散射的相长干涉和相消干涉,形成具有几个狭窄而尖锐峰的独特衍射图,并由探测器进行检查。因此,晶体缺陷可以通过衍射峰展宽分析来表征,如果不存在缺陷,衍射光谱又窄又尖锐;否则,如果存在缺陷引起的应变场,则光谱会变宽或偏移。XRT的检测机理是基于X射线衍射而不是电子散射,因此XRT被归类为光学技术,而SEM是一种非光学技术。Chikvaidze等人使用XRT来确认SiC样品中具有不同堆叠顺序的缺陷。Senzaki等人表明,扩展BPDs到TED的转变是在电流应力测试下使用XRT检测的三角形单个Shockley型堆垛层错(1SSF)的起源。当前的在线XRT通常用于识别缺陷结构,而没有来自其他检测技术(如PL和OM)的可识别检测信号。
光致发光(PL)是用于检测晶体缺陷的最常用的亚表面检测技术之一。PL的高产量使其适用于在线批量生产。SiC是一种间接带隙半导体,在约380nm波长的近带边缘发射处显示PL。SiC晶片中在贯穿缺陷水平的重组可能是辐射性的。基于UV激发的PL技术已被开发用于识别SiC晶片内部存在的缺陷,如BPDs和SFs。然而,没有特征PL特征或相对于无缺陷SiC区域具有弱PL对比度的缺陷,如划痕和螺纹位错,应通过其他检查方法进行评估。由于发射能量根据缺陷的陷阱能级而变化,因此可以使用具有光谱分辨率的PL图像来区分每种类型的缺陷并对其进行映射。由于SF诱导的量子阱状能带结构,多型SF的PL光谱在350–550nm的波长范围内表现出多峰光谱。每种类型的SF都可以通过使用带通滤光片检查它们的发射光谱来区分,该滤光片滤除单个光谱,如图4c所示。Berwian等人构建了一种基于UV-PL的缺陷发光扫描仪,以清楚地检测BPDs、SFs和多型夹杂物。Tajima等人使用具有从深紫外到可见光和近红外等各种激发波长的PL来检测TEDs、TSDs、SFs,并检查PL与蚀刻凹坑图案之间的相关性。然而,一些缺陷的PL图像是相似的,如BPDs和胡萝卜缺陷,它们都表现出线状特征,使得PL难以区分它们,因此其他结构分析工具,如XRT或拉曼光谱,通常与PL并行使用,以准确区分这些缺陷。
拉曼光谱在生物学、化学和纳米技术中具有广泛的应用,用于识别分子、化学键和纳米结构的特征。拉曼光谱是一种无损的亚表面检测方法,可以验证SiC晶片中不同的晶体结构和晶体缺陷。通常,SiC晶圆由激光照射,激光与SiC中的分子振动或声子相互作用,使分子进入虚拟能量状态,导致被检测光子的波长向上或向下移动,分别称为斯托克斯拉曼散射或反斯托克斯拉曼散射。波长的偏移提供了有关SiC振动模式的信息,对应于不同的多型结构。研究表明,在实测的拉曼光谱中,200和780cm
−1处的特征峰表示SiC的4H-多型,而160、700和780cm−1处的特征峰表示SiC的6H-多型。Chikvaidze等人使用拉曼光谱证实了2C-SiC样品中存在拉曼峰约为796和971cm−1的3H-SiC多型。Hundhausen等人利用拉曼光谱研究了高温退火过程中3C-SiC的多型转化。Feng等人发现了微管、TSDs和TEDs的峰值中心偏移和强度变化,如图4e所示。对于空间信息,拉曼映射的图像如图4f所示。通常,拉曼散射信号非常微弱,因此拉曼光谱需要很长时间才能收集到足够的信号。该技术可用于缺陷物理的详细分析,但由于信号微弱和电流技术的限制,它不适合在线检测。
每种类型的缺陷都会对晶圆的质量产生不利影响,并使随后在其上制造的器件失效。缺陷和设备故障之间的劣化与杀伤率有关,杀伤率定义为估计导致设备故障的缺陷比例。每种缺陷类型的杀伤率因最终应用而异。具体而言,那些对器件造成重大影响的缺陷被称为杀手缺陷。先前的研究表明,缺陷与器件性能之间存在相关性。在本节中,我们将讨论不同缺陷对不同设备的影响。
在MOSFET中,BPDs会增加导通电阻并降低栅极氧化层的可靠性。微管限制了运行电流并增加了泄漏电流,而SFs,胡萝卜和多型夹杂物等缺陷降低了阻断电压,表面上的划痕会导致可靠性问题。Isshiki等人发现,SiC衬底下存在潜在的划痕,包括复杂的堆垛层错和位错环,导致SiC-MOSFET中氧化膜的台阶聚束和介电强度下降。其他表面缺陷(如梯形特征)可能会对SiCMOSFET的沟道迁移率或氧化物击穿特性产生重大影响。
在肖特基势垒二极管中,BPDs、TSDs和TEDs增加了反向漏电流,而微管和SFs降低了阻断电压。胡萝卜缺陷和多型夹杂物都会降低阻断电压并增加泄漏电流,而划痕会导致屏障高度不均匀。
在p-n二极管中,BPD增加了导通电阻和漏电流,而TSDs和TEDs降低了阻断电压。微管限制了工作电流并增加了泄漏电流,而SF增加了正向电压。胡萝卜和多型夹杂物会降低阻断电压并增加漏电流,而表面上的划痕对p-n二极管没有直接影响。Skowronski等人表明,在二极管工作期间,SiC外延层内的BPDs转化为SFs,或者允许SFs通过导电沿着BPDs延伸,导致电流退化,从而增加SiCp-n二极管的电阻。研究还证明,SFs可能产生3C-SiC多型,导致SiCp-n二极管的少数载流子寿命缩短,因为3C-SiC多型的带隙低于4H-SiC多型,因此SFs充当量子阱,提高了复合率。此外,在PL表征下,单个Shockley型SFs膨胀,导致结电位发生变化,进而降低SiCp-n二极管的导通电阻。此外,TSDs会导致阻断电压下降,TEDs会降低SiCp-n二极管的少数载流子寿命。
在双极器件中,BPD会降低栅极氧化层的可靠性,而TSD和TED会降低载流子寿命。微管限制了工作电流,而SF缩短了载流子寿命。胡萝卜和多型夹杂物会降低阻断电压,增加泄漏电流,并缩短载流子寿命。
SiC中的点缺陷(空位)会缩短器件的载流子寿命,导致结漏电流并导致击穿电压降低。尽管点缺陷对电子设备有负面影响,但它们也有一些有用的应用,例如在量子计算中。Lukin等人发现,SiC中的点缺陷,如硅空位和碳空位,可以产生具有合适自旋轨道属性的稳定束缚态,作为量子计算的硬件平台选择。
缺陷对不同器件的影响如图5所示。可以看出,缺陷会以多种方式恶化器件特性。虽然可以通过设计不同的设备结构来抵消缺陷的负面影响,但迫切需要建立一个快速准确的缺陷检测系统,以帮助人们观察缺陷并进一步优化过程以减少缺陷。请注意,分析SiC器件的特性以识别缺陷的类型和存在可能被用作缺陷检查方法(图6、7)。
高效的缺陷检测系统需要能够同时识别表面缺陷和晶体缺陷,将所有缺陷归入正确的类别,然后利用多通道机器学习算法显示整个晶圆的缺陷分布数据映射。Kawata等人设计了一种双折射图像中n型SiC晶圆位错对比度的自动检测算法,并以较高的精度和灵敏度成功检测了XRT图像位错对比度的位置。Leonard等人使用深度卷积神经网络(DCNN)机器学习进行自动缺陷检测和分类,方法是使用未蚀刻晶圆的PL图像和相应蚀刻晶圆的自动标记图像作为训练集。DCNN确定的缺陷位置和分类与随后刻蚀刻的特征密切相关。Monno等人提出了一种深度学习系统,该系统通过SEM检查SiC衬底上的缺陷,并以70%的准确率对其进行分类。该方法可以在不出现线性缺陷不一致的情况下组合多个瓦片,并能对126个缺陷进行检测和分类,具有很好的精度。
除了检测缺陷外,降低缺陷密度也是提高SiC器件质量和良率的有用方法。通过使用无微管种子或基于溶液的生长,可以降低微管和TSD的密度。为了减少机械过程引起的表面缺陷,一些研究指出,飞秒激光可用于提高化学-机械平坦化的效率和切割质量。飞秒激光退火还可以提高Ni和SiC之间的欧姆接触质量,增加器件的导电性。除了飞秒激光的应用外,其他一些团队还发现,使用激光诱导液相掺杂(LILPD)可以有效减少过程中产生的损伤。
在这篇综述文章中,我们描述了缺陷检测在碳化硅行业中的重要性,尤其是那些被称为杀手级缺陷的缺陷。本文全面综述了SiC晶圆生产过程中经常出现的晶体学和表面缺陷的细节,以及这些缺陷在不同器件中引起的劣化性质。表面缺陷对大多数器件都是有害的,而晶体缺陷则对缺陷转化和晶圆质量有风险。在了解了缺陷的影响之后,我们总结了常见的表面和亚表面检测技术的原理,这些技术在缺陷检测中的应用,以及每种方法的优缺点。破坏性检测技术可以提供可观察、可靠和定量的信息;然而,这些不能满足在线批量生产的要求,因为它们非常耗时,并且对样品的质量产生不利影响。另一方面,无损检测技术,尤其是基于光学的技术,在生产线上更适用、更高效。请注意,不同的检测技术是相辅相成的。检测技术的组合使用可能会在吞吐量、分辨率和设备复杂性之间取得平衡。未来,有望将具有高分辨率和快速扫描能力的无损检测方法集成到能够同时检测表面缺陷和晶体缺陷的完美缺陷检测系统中,然后使用多通道机器学习算法将所有缺陷分配到正确的类别,并将缺陷分布数据的映射图像显示到整个SiC晶圆上。
广东药科大学第十届化妆品高质量发展大会暨首届广东省化妆品示范产业学院建设研讨会顺利召开
打破多色分析桎梏,深度解析光谱流式新品CytoStellar——访北京层浪生物科技有限公司CEO刘铁夫
合作延续、升级河北医科大学——日立科学仪器(北京)有限公司联合实验室揭牌
为国产芯片保驾护航!ACAIC 2023“集成电路技术发展与分析仪器创新论坛”成功召开
热议中国电镜技术进展!ACAIC 2023 “电子显微镜创新论坛”成功召开